
19990106 035
New Result in Quantum Cryptograpi.

Howard E. Brandt
U.S. Army Research Laboratory

Adelphi, MD 20783-1197
Phone: (301) 394-4143

email: hbrandt@ lampO.arl.army.mil

Abstract The maximum allowable error rate, Qmax' is the value of

In the entangled translucent eavesdropping scenario of key the error rate in the Alice-Bob channel, for which the mu-
generation in quantum cryptography, I demonstrate that tual information in the Bob-Eve channel is unity, namely

the unsafe error rate based on standard mutual informa- [1],
tion comparisons is equivalent to the maximum allowable Qmax = Q such that IBE = 1 . (3)
error rate based on perfect mutual information for the This corresponds to perfect information for the eaves-
eavesdropper. In this case, the unsafe error rate is not in dropper.
fact overly conservative, as is commonly supposed. I recently obtained new closed-form algebraic expressions

Introduction for the error rates and mutual information, expressed only
in terms of the POVM receiver error rate, Q, and the angle

In a popular scheme for entangled translucent eavesdrop- Obetween the carrier polarization states [3,4]. To do this,
ping in quantum cryptography, the key generation proce- I employed the quantum mechanical unitarity conditions
dure involves the transmission, interception, and recep- that must be satisfied by the eavesdropping device param-
tion of nonorthogonal photon polarization states [1]. The eters, together with known expressions for the error rates
eavesdropping is translucent in the sense that it results in and mutual information, expressed in terms of unknown
only a small perturbation on the carrier, following quan- parameters characterizing the apparatus of the eavesdrop-
tum entanglement between the carrier and the probe states. per. I showed that the error rate in the Alice-Eve channel
At the receiving end, a POVM (positive operator valued is given by [4]
measure) is employed in the measurement process. The
eavesdropping involves an ordinary information-maximiz- QAE (Q, = --- Q)(1 - F(Q, 0)2) /2 (4)
ing von Neumann-type projective measurement. It is con-

ventional to refer to the transmitter as Alice, the receiver where
as Bob, and the eavesdropper as Eve. It is commonly as- Q-
sumed that in any eavesdropping scenario of key genera- F(Q, 0) = 2Q(I- Q)- [Q(/2- Q) icos 9
tion in quantum cryptography, the transmission is unsafe [Q(I - Q)] 'Acos 0 {2[Q( - Q)]'/2cos 0-1 }
if the mutual information in the Alice-Bob channel, IAB, is (5)
less than the minimum of the mutual information in the The corresponding mutual information in the Alice-Eve
Alice-Eve channel, IAE, and the mutual information in the channel is
Bob-Eve channel, 1BE, namely [1],

IAB -•min(IAE, IBE) (1) 1AE(QAE) = 1 + QA(lOg2 QA)+ (I - QA)log2 (1 - QA)"(6)
This criterion is commonly supposed to be overly conser-
vative (overcautious) [1,2]. Here and in the following, any In the Bob-Eve channel, one has [4]

mutual information is understood to be maximal. I define /2
the unsafe error rate to be the smallest error rate, Q, in the QBE (Q, ) =- 1 - ( , (7)
Alice-Bob channel, such that the equality in Eq. (1) is sat-isfied, namely,an

Q, = smallest Q such that 'AB = min(AE,IBE) (2) aBEn BE) = 1 + QBElog2QBE + ( -QBE)l2(102 QBE) "

Here, the dependence of mutual information on Bob's er- (8)

ror rate Q (the error rate in the Alice-Bob channel) is
implicit.
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One also has the well-known expression for the mutual Therefore, substituting Eq. (17) in Eq. (18), one has
information, IAB(Q), in the Alice-Bob channel in terms of min(iaE(QAE(Sin 2 a )),IBE(QBE(sin2a9 0))) = IAB(sin 2 a)).
the error rate, Q, in the Alice-Bob channel [1], (19)

lAB(Q) = 1 + Q log2 Q + (1 - Q)log2(0 - Q) (9) Next comparing Eq. (19) with Eq. (2), one can conclude
In the present work, I prove a significant new result, namely, that
that in the entangled translucent eavesdropping scenario, Qu = sin2 a . (20)
the unsafe error rate based on Eq. (2) is equivalent to the
maximum allowable error rate based on Eq. (3). In this Finally, comparing Eqs. (13) and (20), one has

case, the unsafe error rate is not in fact overly conserva- Qu = Qmax, (21)
tive, as is commonly supposed. which was the claim. If one substitutes Eq.(10) in Eqs.

Maximum Allowable Error Rate (20) and (21), one obtains

First define Qu 1 Qmax = ý- ( - sin 0) (22)

= Rr 0 (10) written explicitly in terms of the angle between the pho-
4 2 "ton polarization states.

Next, evaluating Eq. (7) for Q - sin2 a, one obtains
Conclusion

QBE(sin2 o; 0) = 0 . (11)

If one next substitutes Eq. (11) in Eq. (8), one obtains I conclude that for the entangled translucent eavesdrop-
ping scenario of Ekert et al [1], the unsafe error rate de-

IBE(QBE(sin20; 9)) = 1 . (12) fined by Eq. (2) is in fact equal to the maximum allowable
Therefore, comparing Eqs. (12) and (3), one concludes error rate defined by Eq. (3). These rates are given by Eq.
that (22).

Qnax = sin2za, (13) For this scenario, the unsafe error rate is not in fact overly
conservative, as is commonly supposed.

in agreement with Eq. (41) of Ekert et al [1]. The maxi-
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